Главная   Онлайн учебники   База репетиторов России   Товары для школы   Подготовка к ЕГЭ онлайн




Глава 3. Решение уравнений и неравенств

3.2.

Назад Вперед
Назад Вперед

3.2.4.

Основные способы решений неравенств с модулем во многом совпадают с методами решения аналогичных уравнений. Единственное отличие, пожалуй, связано с тем, что, решая неравенства с модулем (как, впрочем, и неравенства вообще), нужно очень внимательно совершать равносильные переходы и следить не только за тем, чтобы не приобрести новые решения, но и за тем, чтобы не потерять уже имеющиеся.

Стандартный путь решения неравенств с модулем заключается в том, что координатная прямая разбивается на промежутки (границами этих промежутков являются нули подмодульных выражений), а затем неравенство решается на каждом из промежутков.

Этот метод работает всегда. Правда, в отдельных случаях может быть затруднена его техническая реализация, например, очень тяжело или невозможно найти корни подмодульных выражений и пр. Однако, это сложности иного плана. Нужно понимать, что раскрытие модуля по определению неизменно приводит к цели. Конечно же, этот метод не является оптимальным: в условиях конкурсного экзамена важен не только результат, но и то время, которое потрачено на его получение.

Рассмотрим методы, не связанные с поиском нулей функций, стоящих под знаком модуля.

Рассмотрим неравенство Очевидно, что те x, для которых g (x) < 0, не являются решениями. Значит, если x является решением, то для него g (x) ≥ 0, и согласно геометрическому смыслу модуля, как расстоянию на координатной оси, данное неравенство равносильно системе Таким образом, имеем

Аналогично можно рассмотреть неравенство Неравенство выполнено для тех x, для которых g (x) < 0 и функции f (x) и g (x) определены. Для тех x, для которых g (x) ≥ 0, имеем равносильную совокупность


Заметим, что последняя совокупность является равносильной нашему неравенству и при g (x) ≤ 0. В этом можно непосредственно убедиться, учтя g (x) ≤ 0 и вспомнив определение знака совокупности.

Пример 1

Решите неравенство

Показать решение

Как видно, в простых случаях особых преимуществ метод перехода к равносильной системе не имеет, но иногда его преимущества весьма заметны.

Пример 2

Решите неравенство

Показать решение


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

Главная   Онлайн учебники   База репетиторов России   Товары для школы   Подготовка к ЕГЭ онлайн