\n');
Глава 11. Векторы
11.6. Вычисление угла между прямыми
Пусть прямые и заданы общими уравнениями
и |
Обозначим через φ величину угла между прямыми и
(напомним, что угол между прямыми измеряется от 0° до 90°), а через ψ – угол между нормальными векторами и этих прямых. Если ψ ≤ 90°, то φ = ψ. Если же ψ > 90°, то φ = 180° – ψ. В обоих случаях верно равенство Из теоремы 11.10 следует, что
и, следовательно,
Записав через координаты, получим
Если прямые и заданы уравнениями с угловыми коэффициентами и
и |
то нормальные векторы этих прямых могут быть и выражение для косинуса угла между этими прямыми будет иметь вид:
Из последнего выражения следует, что если то cos φ = 1 и φ = 0, то есть прямые параллельны или совпадают. С другой стороны, если прямые параллельны, то φ = 0 или cos φ = 1. Подставляя в правую часть вместо cos φ его значение 1, умножая обе части на знаменатель и возводя в квадрат, получим
Отсюда получаем
Если то cos φ = 0 и то есть прямые перпендикулярны. Обратно, если прямые перпендикулярны, то или cos φ = 0. Отсюда следует с необходимостью
Следовательно, необходимые и достаточные условия параллельности и перпендикулярности двух прямых, заданных уравнениями с угловыми коэффициентами и формулируются следующим образом.
Пользуясь знанием координат направляющего и нормального векторов прямых, заданных общими уравнениями, можно сформулировать условия параллельности и перпендикулярности прямых через коэффициенты общих уравнений этих прямых.
Пусть задана прямая l общим уравнением Ax + By + C = 0 и некоторая точка лежащая вне прямой. Поставим задачу найти расстояние от этой точки до прямой l. Опустим перпендикуляр из точки на прямую l и обозначим радиус-векторы точек и соответственно (см. рис. 11.6.1). Очевидно,
1
|
Рисунок 11.6.1
|
Пусть – некоторая точка прямой l, отличная от точки Тогда уравнение прямой l можно записать в нормальной векторной форме:
где а – вектор нормали к прямой l. Или, в векторной форме,
Очевидно, справедливо векторное равенство причем поэтому Умножив обе части равенства скалярно на вектор
, получим
Так как точка лежит на прямой l, то и, следовательно, Подставляя в исходное равенство, найдем
Отсюда
Переходя к координатной форме записи и учитывая, что имеем
Таким образом верна теорема
Теорема 11.15.
Растояние
от точки
до прямой l, заданной уравнением Ax + By + C = 0 вычисляется по формуле