Глава 3. Решение уравнений и неравенств

3.2.

Назад Вперед
Назад Вперед

3.2.2.

Рассмотрим выражение вида:
(1)
(Вместо знака < могут стоять знаки >, ≤, ≥.)

Основным методом решения неравенств вида (1) является метод интервалов. Начнём рассматривать его, прежде всего, для многочленов. Этот метод основан на том, что двучлен (x – a) положителен при x > a и отрицателен при x < a, то есть при переходе через точку x = a этот двучлен меняет знак.

Отсюда следуют полезные замечания.

Модель 3.7. Метод интервалов
Пример 1

Решите неравенство

Показать решение

 

Если правая и левая части данного неравенства являются дробно-рациональными функциями, то это неравенство называется рациональным.

Рассмотрим стандартный приём решения рациональных неравенств, основанный на сведении данного неравенства к неравенству для многочлена, метод решения которого (метод интервалов) нам уже известен. Итак, рассмотрим рациональное неравенство


f (x) > g (x),

где f (x) и g (x) − рациональные функции, то есть функции, представимые в виде отношения многочленов. Перенося обе части рационального неравенства в левую часть, представим её в виде отношения двух многочленов: (Такой вид неравенства называется стандартным.) Заметим, что:

Итак,

Левая часть полученных неравенств есть произведение многочленов, то есть сама является многочленом. А поскольку его знак совпадает со знаком дроби то дробь меняет или не меняет знак при переходе через точку x = a в зависимости от того, входит в него двучлен (x – a) в чётной или нечётной степени.

Если же двучлен (x – a) входит в многочлен P (x) в степени k, а в многочлен Q (x) − в степени l, то в многочлен P (x) · Q (x) этот двучлен войдёт в степени k + l, а в дробь − в степени k – l. Легко проверить, что для любых чисел k и l чётность чисел k + l и k – l одинакова. Следовательно, вывод о поведении дроби при переходе через точку x = a мы сделаем в точности такой же, как если бы наше неравенство было представлено в виде многочлена P (x) · Q (x).

Таким образом, показан принципиальный метод решения рациональных неравенств. Имея в виду последнее замечание, метод интервалов для рациональных функций можно сформулировать в следующем виде.

  1. Привести неравенство к стандартному виду

  2. Разложить на множители многочлены P (x) и Q (x) (как мы знаем, для этого придётся решить уравнения P (x) = 0 и Q (x) = 0).

  3. Нули числителя, не совпадающие с нулями знаменателя, отметить на числовой оси точками, а нули знаменателя − кружочками (эти точки, очевидно, не входят в ОДЗ рациональной функции и потому они как будто «выколоты» из числовой оси).

  4. Подставить мысленно в неравенство очень большое число (большее самого большого из корней числителя и знаменателя) для того, чтобы определить, какой знак имеет рациональная функция на самом правом интервале. Провести кривую знаков, проходя через все точки, отмеченные на числовой прямой, меняя или не меняя знак в зависимости от суммарной степени двучлена, отвечающего данной точке.

  5. Записать ответ, обращая особое внимание на граничные точки, часть из которых может быть «выколота».

Таким образом, для нестрогих рациональных неравенств имеем по определению
           

Пример 2

Решить неравенство

Показать решение

Заметим, что на двучлен (x – 2) можно спокойно сокращать; встретившись и в числителе и в знаменателе, он не будет влиять на знак неравенства. Надо лишь не забыть, что x ≠ 2, так как при x = 2 не определён знаменатель данной дроби.


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий