В § 2.3 были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:
|
(*) |
Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений.
Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов
При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения:
Здесь
Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения:
Средняя мощность переменного тока на участке цепи, содержащем резистор, равна
Если участок цепи содержит только конденсатор емкости
Аналогично можно показать, что
Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.
Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника
Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна
Как видно из векторной диаграммы,
В § 2.3 было выведено соотношение между амплитудами тока
Величину
|
(**) |
Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).
Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный
|
Рисунок 2.4.1. |
При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах
|
Рисунок 2.4.2. |
Из диаграммы следует:
Поэтому полное сопротивление параллельного
При параллельном резонансе (
Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.