\n');
Глава 4. Многогранники
4.9. Сечения многогранников
Приведем несколько характерных примеров решения задач на комбинацию многогранников.
Пример 4.1.
Дан куб с ребром a (чертеж 4.9.1). Точки M, N, P – соответственно середины ребер AB, BC, BB1. Найти объем пирамиды D1MNP.
Решение.
Кроме пирамиды D1MNP куб содержит еще четыре пирамиды: PMBN, D1PNCC1B1, D1AMPB1A1, D1AMNCD с объемами соответственно V1, V2, V3, V4. Пирамиды с объемами V2, V3, V4 равновеликие. Пусть V – искомый объем, а Vk – объем куба, тогда V = Vk – 3V2 – V1. Заметим, что
Окончательно имеем
Ответ.
Пример 4.2.
Правильная треугольная призма имеет высоту h и сторону основания a (чертеж 4.9.2). Правильная треугольная пирамида имеет с призмой общее основание и размещена по одну с ней сторону относительно этого основания. Высота пирамиды равна 2h. Найти площадь полной поверхности той части пирамиды, которая лежит внутри призмы.
Решение.
Находим площади оснований:
Пусть Sб – площадь боковой поверхности усеченной пирамиды, тогда Sб = 3S, где S – площадь трапеции ABB2A2. Из Δ POD имеем
тогда
Следовательно,
Ответ.
Пример 4.3.
В конус вписан равносторонний цилиндр. Найти объем V цилиндра и площадь Sп его полной поверхности, если образующая конуса составляет с плоскостью его основания угол γ (рис. 4.9.1), а высота конуса равна h.
1
|
Рисунок 4.9.1
|
Решение. Осевое сечение данной комбинации – это квадрат MNLT, вписанный в равнобедренный треугольник PAB; PAB = γ, PO = h – высота конуса; O1 = POTL; PLT = PBA = γ. Пусть TM = x, тогда
Из Δ PO1L имеем PO1 = O1L tg γ, или
откуда
Далее находим
Ответ.
Пример 4.4.
В шар радиуса R (рис. 4.9.2) вписан цилиндр. Отношение площади полной поверхности цилиндра к площади поверхности шара равно t. Какие значения может принимать t?
2
|
Рисунок 4.9.2
|
Решение. Осевое сечение данной в условии комбинации шара и цилиндра – прямоугольник ABCD, вписанный в окружность Пусть CAB = α, тогда из Δ AOK имеем OK = R sin α, AK = R cos α. По условию
то есть при следовательно, t может принимать как угодно малые положительные значения. Для определения максимального значения t найдем производную
и приравняем ее к нулю:
откуда при tg 2α = 2 или при Следовательно, Принимая во внимание, что
получаем:
Ответ.
Пример 4.5.
В конус вписан шар радиуса r (рис. 4.9.3). Найти объем конуса, если его высота равна h.
3
|
Рисунок 4.9.3
|
Решение. Осевое сечение данной комбинации шара и конуса – это равнобедренный треугольник PAB, описанный вокруг окружности PC = h – высота конуса, ODPB.
Объем конуса Заметим, что поэтому
или |
откуда Следовательно, имеем:
Ответ.
Пример 4.6.
Шар вписан в усеченный конус (рис. 4.9.4). Доказать, что их объемы относятся как площади полных поверхностей.
4
|
Рисунок 4.9.4
|
Решение. Осевое сечение шара и усеченного конуса – это равнобедренная трапеция, описанная вокруг окружности Пусть радиусы оснований усеченного конуса равны r1 и r2, тогда объем шара объем усеченного конуса площадь поверхности шара площадь полной поверхности усеченного конуса
Поскольку то
что и требовалось доказать.