![]() |
![]() |
Почти 90 % из 2500 известных атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью. У больших ядер нестабильность возникает вследствие конкуренции между притяжением нуклонов ядерными силами и кулоновским отталкиванием протонов. Стабильных ядер с зарядовым числом
Явление радиоактивности было открыто в 1896 году французским физиком А. Беккерелем, который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года французские физики М. и П. Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний и радий
В последующие годы исследованием природы радиоактивных излучений занимались многие физики, в том числе Э. Резерфорд и его ученики. Было выяснено, что радиоактивные ядра могут испускать частицы трех видов: положительно и отрицательно заряженные и нейтральные. Эти три вида излучений были названы
![]() |
Рисунок 6.7.1. Схема опыта по обнаружению ![]() |
Эти три вида радиоактивных излучений сильно отличаются друг от друга по способности ионизировать атомы вещества и, следовательно, по проникающей способности. Наименьшей проникающей способностью обладает
Во втором десятилетии XX века, после открытия Э. Резерфордом ядерного строения атомов было твердо установлено, что радиоактивность – это свойство атомных ядер. Исследования показали, что ,
Альфа-распад. Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов . Примером такого процесса может служить
![]() |
Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость
Исследования показали, что радиоактивное вещество может испускать
Таким образом,
В теории
![]() |
Рисунок 6.7.3. Туннелирование |
Бета-распад. При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут (см. § 6.5), они возникают при превращается в протон
и электрон
Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино. Она обозначается символом Поэтому реакция распада нейтрона записывается в виде
|
Аналогичный процесс происходит и внутри ядер при
При возникающего при
в протактиний
![]() |
Наряду с электронным и нейтрино
. Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей. Позитроны возникают в результате реакции превращения протона в нейтрон по следующей схеме:
|
Гамма-распад. В отличие от
Закон радиоактивного распада. В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества
Пусть за малый промежуток времени
Коэффициент пропорциональности изменения функции
|
Подобная зависимость возникает во многих физических задачах (например, при разряде конденсатора через резистор). Решение этого уравнения приводит к экспоненциальному закону:
Для практического использования закон радиоактивного распада удобно записать в другом виде, используя в качестве основания число 2, а не
Величина
![]() |
Рис. 6.7.4 иллюстрирует закон радиоактивного распада.
![]() |
Рисунок 6.7.4. Закон радиоактивного распада |
Период полураспада – основная величина, характеризующая скорость процесса. Чем меньше период полураспада, тем интенсивнее протекает распад. Так, для урана
При состоящая из 14 последовательных распадов (8 α-распадов и 6 β-распадов). Эта серия заканчивается стабильным изотопом свинца
(рис. 6.7.5).
![]() |
Рисунок 6.7.5. Схема распада радиоактивной серии ![]() |
В природе существуют еще несколько радиоактивных серий, аналогичных серии . Известна также серия, которая начинается с нептуния
не обнаруженного в естественных условиях, и заканчивается на висмуте
Эта серия радиоактивных распадов возникает в ядерных реакторах.
Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом
Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате
с периодом полураспада
в останках древних организмов можно определить время их гибели.
Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма. Поэтому при работе с любым источником радиации необходимо принимать все меры радиационной защиты людей, которые могут попасть в зону действия излучения.
Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон Как видно из схемы, изображенной на рис. 6.7.5, радон является продуктом
который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана (рис. 6.7.5). По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55 % ионизирующей радиации за счет радона и только 11 % за счет медицинских процедур. Вклад космических лучей составляет примерно 8 %. Общая доза облучения, которую получает человек за жизнь, во много раз меньше предельно допустимой дозы (ПДД), которая устанавливается для людей некоторых профессий, подвергающихся дополнительному облучению ионизирующей радиацией.
![]() |
![]() |
![]() |