Ни одно из уравнений системы не является однородным, однако в левой части уравнений стоят однородные функции. Применим стандартный приём, который позволяет свести систему такого вида к однородному уравнению. Умножим первое уравнение на 4, а второе на 3 и вычтем из первого уравнения второе. Имеем:
А это уравнение уже однородное. Очевидно, что пара (0; 0) является его решением, однако непосредственной подстановкой можно убедиться, что эта пара не является решением исходной системы уравнений. Значит, разделим уравнение на

Получим:
Стандартная замена
приводит нас к квадратному уравнению
корни которого
и
Система распалась на две:
1) 
2) 
Ответ.
