![]() |
![]() |
В § 2.3 были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:
|
(*) |
Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений.
Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов
и ω
При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения:
![]() |
Здесь
|
Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения:
|
Средняя мощность переменного тока на участке цепи, содержащем резистор, равна
|
Если участок цепи содержит только конденсатор емкости
Поэтому
![]() |
Аналогично можно показать, что
Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.
Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника
Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна
|
Как видно из векторной диаграммы, ![]()
Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.
В § 2.3 было выведено соотношение между амплитудами тока
0 для последовательной
![]() |
Величину
|
|
|
(**) |
Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).
Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный
|
| Рисунок 2.4.1. Параллельный |
При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах
|
| Рисунок 2.4.2. Векторная диаграмма для параллельного RLC-контура |
Из диаграммы следует:
![]() |
Поэтому полное сопротивление параллельного
![]() |
При параллельном резонансе (
Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.
![]() |
![]() |
![]() |
