Глава 7. Химические источники тока

Назад Вперед
7.4.1. Типы гальванических элементов

Концентрационные элементы состоят из одинаковых электродов, отличающихся активностями потенциалопределяющего иона Действительно, из уравнения Нернста следует, что при ЭДС концентрационного элемента
равна

ЭДС этих элементов обычно очень мала. Концентрационные элементы используются при определении pH и концентраций труднорастворимых солей.

В топливных гальванических элементах (электрохимических генераторах) процесс окисления некоторых видов топлива используется для непосредственного получения электрической энергии. Основным их преимуществом является принципиальная возможность достижения очень высоких КПД использования топлив.

В щелочном водородно-кислородном топливном элементе
где M1 и M2 – проводники первого рода, в основном серебро, металлы платиновой группы и некоторые другие, играющие роль катализаторов электродных процессов и токоотводов, на аноде идет реакция
а на катоде –

Суммарный процесс соответствует реакции горения водорода:

Батарея топливных элементов с устройствами для подвода топлива и окислителя, вывода продуктов реакции, поддержания и регулирования температуры, называется электрохимическим генератором. Кислородно-водородные генераторы применяются на космических кораблях. Они обеспечивают космический корабль и космонавтов не только энергией, но и водой, которая является продуктом реакции в топливном элементе.

Модель 7.6. Электролиз

Аккумуляторами называются обратимые гальванические элементы многоразового действия. При пропускании через них электрического тока (зарядке) они накапливают химическую энергию, которую потом при их работе (разрядке) отдают потребителю в виде электрической энергии. Наиболее распространены два вида аккумуляторов: кислотный (свинцовый) и щелочные.

Анод заряженного свинцового аккумулятора состоит из свинца, катод – из диоксида свинца. Металлический тип проводимости PbO2 делает его пригодным для работы в качестве электрода. Электролитом служит раствор H2SO4 (32–39 %), в котором PbSO4 и PbO2 малорастворимы.

Схему аккумулятора можно изобразить так:

Анодный процесс работающего аккумулятора
катодный процесс –

Таким образом, в свинцовом аккумуляторе осуществляется реакция

При зарядке протекает обратная реакция и электроды меняют свои функции: катод становится анодом, а анод – катодом. ЭДС свинцового аккумулятора зависит от отношения активности кислоты и воды:

В процессе работы аккумулятора концентрация кислоты падает, а следовательно, падает и ЭДС. Когда ЭДС достигает 1,85 В, аккумулятор считается разрядившимся. При более низкой ЭДС пластины покрываются тонким слоем PbSO4 и и аккумулятор разряжается необратимо. Во избежание этого аккумулятор периодически подзаряжают.

В заряженном щелочном железо-никелевом аккумуляторе анодом служит железо, катодом – гидроксид никеля (III), электролит – 20%-й раствор KOH:

При работе аккумулятора на аноде происходит окисление железа:
на катоде – восстановление гидроксида никеля (III):

Суммарная активность процесса:

В уравнении Нернста для данного аккумулятора под знаком логарифма стоят не концентрации, а произведения растворимости ПР участвующих в этой реакции труднорастворимых веществ:

ЭДС щелочного аккумулятора не зависит от концентрации щелочи, поскольку в выражение под знаком логарифма входят постоянные величины.

Аналогично работают щелочные кадмий-никелевый и серебряно-цинковый аккумуляторы:


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий