Пусть задана совокупность из
На рис. 9.1.1 а показана простая ломаная, а на рис. 9.1.1 б, в, г – ломаные с самопересечением.
|
Рисунок 9.1.1. |
Простая замкнутая ломаная называется многоугольником, если ее смежные звенья не лежат на одной прямой. Вершины ломаной называются вершинами многоугольника, а звенья ломаной – сторонами. Диагоналями многоугольника называются отрезки, соединяющие несоседние вершины многоугольника.
Плоским многоугольником называется конечная часть плоскости, ограниченная многоугольником – его границей. Точки плоского многоугольника, отличные от точек его границы, называются внутренними. Многоугольной фигурой называется объединение конечного числа плоских многоугольников. Многоугольные фигуры не перекрываются, если они не имеют общих внутренних точек. Многоугольная фигура называется составленной из данных многоугольных фигур (разбитой на данные многоугольные фигуры), если она является их объединением, а сами эти фигуры не перекрываются.